Description de l'offre
La plupart des calculs industriels (déterministes) pour les réacteurs nucléaires suivent une approche en deux étapes. Tout d’abord, un seul assemblage de combustible est modélisé en théorie du transport en 2D avec des conditions aux limites de réflexion, afin de générer des sections efficaces à 2 groupes. Ces sections efficaces à 2 groupes sont ensuite utilisées pour modéliser le cœur complet du réacteur, à l’aide de la théorie de la diffusion. Une difficulté, liée au fait que chaque assemblage est modélisé indépendamment avec des conditions aux limites de réflexion, réside dans le fait que le spectre (en énergie) du flux neutronique résultant peut être très différent du spectre que l’assemblage subira réellement dans le cœur du réacteur, où les neutrons peuvent se déplacer entre les assemblages et/ou fuir du cœur. Les codes déterministes à l’échelle assemblage sont capables de contrecarrer cet effet grâce à une correction a posteriori, où un « modèle de fuites » est appliqué aux résultats. Sans l’application de cette correction, les sections efficaces de diffusion à 2 groupes, ainsi que les résultats d’évolution du combustible, peuvent être erronés, ce qui conduit à une modélisation inadéquate du cœur du réacteur dans son ensemble.
Dans la littérature, une méthode a été proposée pour intégrer directement la « correction de fuites » dans le processus de simulation Monte-Carlo. Cette approche résout directement l’équation du mode fondamental de « buckling » pour le flux neutronique. Liée à l’équation du transport de Boltzmann, l’équation de buckling est complexe, ce qui signifie que le flux neutronique recherché (en fonction de la position, de la direction et de l’énergie) possède à la fois une composante réelle et une composante imaginaire. Cela implique que les particules dans la simulation Monte Carlo doivent avoir des poids statistiques complexes, avec des parties réelles et imaginaires pouvant être positives ou négatives.
L’objectif du stage est de mettre en œuvre cette méthode de simulation dans un mini-app Monte Carlo de transport neutronique. Ce code possède déjà de nombreuses fonctionnalités uniques qui facilitent le transport de particules avec des poids statistiques complexes. Une fois la méthode implémentée, les résultats Monte-Carlo seront comparés aux résultats issus d’un code déterministe avec modèle de fuites. Les grandeurs d’intérêt qui seront examinées incluront le spectre du flux neutronique en énergie, les coefficients de diffusion et les sections efficaces à 2 groupes. Les sections efficaces de diffusion à 2 groupes obtenues seront ensuite utilisées dans des simulations du cœur complet afin d’évaluer leur précision, en les comparant aux sections efficaces à deux groupes générées par des codes déterministes, ainsi qu’aux résultats de référence obtenus par Monte-Carlo en cœur complet. Si le temps le permet, une étude des résultats d’irradiation provenant du Monte-Carlo sera également envisagé
Moyens / Méthodes / Logiciels
Simulation Monte-Carlo / Neutronique
Profil du candidat
M2 / Ecole d'ingénieur
En cliquant sur "JE DÉPOSE MON CV", vous acceptez nos CGU et déclarez avoir pris connaissance de la politique de protection des données du site jobijoba.com.