Emploi
J'estime mon salaire
Mon CV
Mes offres
Mes alertes
Se connecter
Trouver un emploi
TYPE DE CONTRAT
Emploi CDI/CDD
Missions d'intérim Offres d'alternance
Astuces emploi Fiches entreprises Fiches métiers
Rechercher

L'apprentissage automatique pour l'analyse cosmologique des images de lentille gravitationnelle faible provenant du satellite euclid // machine-learning methods for the cosmological analysis of weak- gravitational lensing images from the euclid satellite

Saclay
Alternance
CEA Paris-Saclay Laboratoire CosmoStat
Publiée le 26 octobre
Description de l'offre

Topic description

L'effet de lentille gravitationnelle faible, la distorsion des images de galaxies à haut redshift due aux structures de matière au long de la ligne de visée à grande échelle, est l'un des outils les plus prometteurs de la cosmologie pour sonder le secteur sombre de l'Univers. Le satellite spatial européen Euclide mesurera les paramètres cosmologiques avec une précision sans précédent. Pour atteindre cet objectif ambitieux, un certain nombre de sources d’erreurs systématiques doivent être quantifiées et comprises. L’une des principales origines des biais est liée à la détection des galaxies. Il existe une forte dépendance à la densité de galaxies locale et au fait que l'émission lumineuse de la galaxie chevauche les objets proches. Si elles ne sont pas traitées correctement, de telles galaxies « mélangées » (blended) biaiseront fortement toute mesure ultérieure de distorsions d'image à faible lentille.
L'objectif de cette thèse est de quanti?er et de corriger les biais de détection des lentilles faibles, notamment dus au mélange. À cette fin, des algorithmes modernes d’apprentissage automatique et profond, y compris des techniques d’auto-différenciation, seront utilisés. Ces techniques permettent une estimation très efficace de la sensibilité des biais liés aux propriétés des galaxies et des levés sans qu'il soit nécessaire de créer un grand nombre de simulations. L'étudiant effectuera des analyses d'inférence de paramètres cosmologiques des données de lentille faible d'Euclide. Les corrections des biais développées dans cette thèse seront inclutes à prior dans la mesure de formes de galaxies, où à postérior â l'aide de paramètres de nuisance, afin d'obtenir des mesures de paramètres cosmologiques avec une fiabilitlé requise pour une cosmologie de précision.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Weak gravitational lensing, the distortion of the images of high-redshift galaxies due to foreground matter structures on large scales, is one of the most promising tools of cosmology to probe the dark sector of the Universe. The statistical analysis of lensing distortions can reveal the dark-matter distribution on large scales, The European space satellite Euclid will measure cosmological parameters to unprecedented accuracy. To achieve this ambitious goal, a number of sources of systematic errors have to be quanti?ed and understood. One of the main origins of bias is related to the detection of galaxies. There is a strong dependence on local number density and whether the galaxy's light emission overlaps with nearby objects. If not handled correctly, such ``blended`` galaxies will strongly bias any subsequent measurement of weak-lensing image distortions.
The goal of this PhD is to quantify and correct weak-lensing detection biases, in particular due to blending. To that end, modern machine- and deep-learning algorithms, including auto-differentiation techniques, will be used. Those techniques allow for a very efficient estimation of the sensitivity of biases to galaxy and survey properties without the need to create a vast number of simulations. The student will carry out cosmological parameter inference of Euclid weak-lensing data. Bias corrections developed during this thesis will be included a prior in galaxy shape measurements, or a posterior as nuisance parameters. This will lead to measurements of cosmological parameters with a reliability and robustness required for precision cosmology.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Direction d’Astrophysique
Laboratoire : Laboratoire CosmoStat
Date de début souhaitée : 01-10-
Ecole doctorale : Astronomie et Astrophysique d’Île de France (ED A&A)
Directeur de thèse : Farrens Samuel
Organisme : CEA
Laboratoire : DRF/IRFU
URL :
URL :

Funding category

Public/private mixed funding

Funding further details

Postuler
Créer une alerte
Alerte activée
Sauvegardée
Sauvegarder
Voir plus d'offres d'emploi
Estimer mon salaire
JE DÉPOSE MON CV

En cliquant sur "JE DÉPOSE MON CV", vous acceptez nos CGU et déclarez avoir pris connaissance de la politique de protection des données du site jobijoba.com.

Offres similaires
Emploi Saclay
Emploi Essonne
Emploi Ile-de-France
Intérim Essonne
Intérim Ile-de-France
Accueil > Emploi > L'apprentissage automatique pour l'analyse cosmologique des images de lentille gravitationnelle faible provenant du satellite Euclid // Machine-learning methods for the cosmological analysis of weak- gravitational lensing images from the Euclid satellite

Jobijoba

  • Conseils emploi
  • Avis Entreprise

Trouvez des offres

  • Emplois par métier
  • Emplois par secteur
  • Emplois par société
  • Emplois par localité
  • Emplois par mots clés
  • Missions Intérim
  • Emploi Alternance

Contact / Partenariats

  • Contactez-nous
  • Publiez vos offres sur Jobijoba
  • Programme d'affiliation

Suivez Jobijoba sur  Linkedin

Mentions légales - Conditions générales d'utilisation - Politique de confidentialité - Gérer mes cookies - Accessibilité : Non conforme

© 2025 Jobijoba - Tous Droits Réservés

Les informations recueillies dans ce formulaire font l’objet d’un traitement informatique destiné à Jobijoba SA. Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée, vous disposez d’un droit d’accès et de rectification aux informations qui vous concernent. Vous pouvez également, pour des motifs légitimes, vous opposer au traitement des données vous concernant. Pour en savoir plus, consultez vos droits sur le site de la CNIL.

Postuler
Créer une alerte
Alerte activée
Sauvegardée
Sauvegarder