Emploi
J'estime mon salaire
Mon CV
Mes offres
Mes alertes
Se connecter
Trouver un emploi
TYPE DE CONTRAT
Emploi CDI/CDD
Missions d'intérim Offres d'alternance
Astuces emploi Fiches entreprises Fiches métiers
Rechercher

Compression hybride de réseaux de neurones pour l’ia embarquée: concilier efficacité et performance // hybrid compression of neural networks for embedded ai: balancing efficiency and accuracy

Saclay
CEA Rennes Laboratoire Vision pour la Modélisation et la Localisation
Publiée le 2 octobre
Description de l'offre

Topic description

Les réseaux de neurones convolutifs (CNNs) sont aujourd’hui au cœur de la vision par ordinateur, mais leur déploiement sur des systèmes embarqués (robots, objets connectés, dispositifs mobiles) reste limité par leur taille et leur consommation en énergie. Une solution consiste à compresser les modèles pour les rendre plus légers et plus rapides, sans perte importante de précision. Plusieurs approches existent (quantification des poids, factorisation bas-rang, sparsité), mais elles atteignent rapidement leurs limites lorsqu’elles sont appliquées séparément. L’objectif de cette thèse est de développer un cadre d’optimisation unifié permettant de combiner ces techniques de façon synergique. Le travail comportera une part théorique (modélisation mathématique, optimisation) et une part expérimentale (validation sur réseaux standards comme ResNet ou MobileNet, puis sur plateformes embarquées type Jetson, Raspberry Pi, FPGA). À plus long terme, l’approche pourra être testée sur d’autres architectures comme les transformers. Le projet s’appuie sur une collaboration entre un laboratoire académique spécialisé en décomposition tensorielle et un partenaire orienté hardware, offrant un encadrement complémentaire et interdisciplinaire.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Convolutional Neural Networks (CNNs) have become a cornerstone of computer vision, yet deploying them on embedded devices (robots, IoT systems, mobile hardware) remains challenging due to their large size and energy requirements. Model compression is a key solution to make these networks more efficient without severely impacting accuracy. Existing methods (such as weight quantization, low-rank factorization, and sparsity) show promising results but quickly reach their limits when used independently. This PhD will focus on designing a unified optimization framework that combines these techniques in a synergistic way. The work will involve both theoretical aspects (optimization methods, adaptive rank selection) and experimental validation (on benchmark CNNs like ResNet or MobileNet, and on embedded platforms such as Jetson, Raspberry Pi, and FPGA). An optional extension to transformer architectures will also be considered. The project benefits from complementary supervision: academic expertise in tensor decompositions and an industrial-oriented partner specialized in hardware-aware compression.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service : Service Intelligence Artificielle pour le Langage et la Vision
Laboratoire : Laboratoire Vision pour la Modélisation et la Localisation
Date de début souhaitée : 01-12-
Ecole doctorale : MAthématiques, Télécommunications, Informatique, Signal, Systèmes, Électronique (MATISSE)
Directeur de thèse : CHILLET Daniel
Organisme : ENSSAT _ Université de Rennes 1

Funding category

Public/private mixed funding

Funding further details

Postuler
Créer une alerte
Alerte activée
Sauvegardée
Sauvegarder
Voir plus d'offres d'emploi
Estimer mon salaire
JE DÉPOSE MON CV

En cliquant sur "JE DÉPOSE MON CV", vous acceptez nos CGU et déclarez avoir pris connaissance de la politique de protection des données du site jobijoba.com.

Offres similaires
Emploi Saclay
Emploi Essonne
Emploi Ile-de-France
Intérim Essonne
Intérim Ile-de-France
Accueil > Emploi > Compression hybride de réseaux de neurones pour l’IA embarquée: concilier efficacité et performance // Hybrid Compression of Neural Networks for Embedded AI: Balancing Efficiency and Accuracy

Jobijoba

  • Conseils emploi
  • Avis Entreprise

Trouvez des offres

  • Emplois par métier
  • Emplois par secteur
  • Emplois par société
  • Emplois par localité
  • Emplois par mots clés
  • Missions Intérim
  • Emploi Alternance

Contact / Partenariats

  • Contactez-nous
  • Publiez vos offres sur Jobijoba
  • Programme d'affiliation

Suivez Jobijoba sur  Linkedin

Mentions légales - Conditions générales d'utilisation - Politique de confidentialité - Gérer mes cookies - Accessibilité : Non conforme

© 2025 Jobijoba - Tous Droits Réservés

Les informations recueillies dans ce formulaire font l’objet d’un traitement informatique destiné à Jobijoba SA. Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée, vous disposez d’un droit d’accès et de rectification aux informations qui vous concernent. Vous pouvez également, pour des motifs légitimes, vous opposer au traitement des données vous concernant. Pour en savoir plus, consultez vos droits sur le site de la CNIL.

Postuler
Créer une alerte
Alerte activée
Sauvegardée
Sauvegarder