Topic description
Comprendre les paramètres qui déterminent l'amplitude de la conductivité thermique (k) dans les solides présente un intérêt à la fois fondamental et technologique. k est sensible à toutes les quasi-particules transportant de l'énergie, et en particulier aux phonons,vibrations collectives des atomes dans les cristaux. Cependant, les mesures de k ont également permis d'identifier des porteurs de chaleur plus exotiques, comme les spinons dans la chaîne ntiferromagnétique de Heisenberg. En termes d'applications, les propriétés thermiques des solides sont au coeur d'enjeux sociaux et environnementaux majeurs. La nécessité, par exemple, de disposer de dispositifs thermoélectriques et de barrières thermiques efficaces pour économiser l'énergie a ainsi motivé la recherche de barrières thermiques présentant une k faible. Toute une série de stratégies ont été proposées pour réduire la vitesse des phonons et/ou leur libre parcours
moyen : utilisation de liaisons interatomiques faibles, forte anharmonicité, nanoconception, structures cristallines complexes ou partiellement désordonnées, etc...Cependant, un autre concept prometteur pour réduire davantage le libre
parcours moyen des phonons est basé sur un autre mécanisme, le couplage magnéto-élastique.
Ce concept est né récemment de l'observation d'un couplage spin-phonon dans différents oxydes de terres-rares. Les excitations magnétiques impliquées dans le couplage magnéto-élastique à l'oeuvre dans ces composés ne sont pas des magnons classiques, mais des excitations de champ cristallin (CEF) à faible énergie. Comme ces dernières sont des excitations électroniques locales, elles ne se dispersent pas et ne peuvent donc pas être associées à des quasi-particules se propageant. En d'autres termes, elles ne sont pas des vecteurs de chaleur potentiels et ne contribuent donc pas à k. Cependant, elles peuvent réduire considérablement la durée de vie des phonons par l'intermédiaire d'un nouveau mécanisme de diffusion.
L'objectif de cette thèse de doctorat est donc d'étudier, tant sur le plan expérimental que théorique, le couplage magnéto-élastique et son impact sur la conductivité thermique. Les systèmes étudiés seront (sans s'y limiter) les pérovskites de Tb et comprendront des compositions à haute entropie ou à stabilisées par entropie, présentant une conductivité thermique très faible.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Understanding the parameters which determine the magnitude of thermal conductivity (k) in solids is of both fundamental and technological interests. k is sensitive to all quasiparticles carrying energy, whether charged or neutral. Foremost among these are phonons, the collective vibrations of atoms in crystals. Measurements of k, however, have also identified more exotic carriers like spinons in the antiferromagnetic Heisenberg chain. In terms of applications, thermal properties of solids are at the heart of major social and environmental issues. The need, for instance, for highly efficient thermoelectric and thermal barrier devices to save energy has driven the quest for low thermal conductors. Over time, a range of strategies has thus been suggested to hinder phonon velocities and/or mean free paths: use of weak interatomic bonds, strong anharmonicity, nanoscale designs, or complex or disordered unit cells. Another promising concept to further impair the phonon mean-free path is based on magneto-elastic coupling.
Still in its infancy, this concept has emerged from the observation of a spin-phonon coupling in a variety of rare-earths based materials. The magnetic excitations involved in the magnetoelastic coupling at play in those compounds are not standard magnons, but low energy crystal field excitations (CEF). Since the latter are local electronic excitations, they do not disperse and thus cannot be associated with propagating quasiparticles. In other words, they are not potential heat carriers hence do not contribute to k, in contrast with dispersive magnetic quasiparticles like magnons. However, they can significantly reduce the phonon lifetime by opening a new scattering mechanism.
The aim of the PhD thesis is therefore to investigate, both experimentally and theoretically, magnetoelastic coupling and its impact on thermal conductivity. The systems to be studied will be (but not restricted to) Tb perovskites, and will include high-entropy or entropy stabilized compositions, displaying glass-like thermal conductivity.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Laboratoire Léon Brillouin
Laboratoire : Nouvelles Frontières dans les Matériaux Quantiques
Date de début souhaitée : 01-10-
Ecole doctorale : Physique en Île-de-France (EDPIF)
Directeur de thèse : DAMAY-ROWE Françoise
Organisme : CNRS-UMR 12
Laboratoire : LLB - Laboratoire de Diffusion Neutronique
URL :
URL :
Funding category
Public/private mixed funding
Funding further details
En cliquant sur "JE DÉPOSE MON CV", vous acceptez nos CGU et déclarez avoir pris connaissance de la politique de protection des données du site jobijoba.com.