Topic description
La description théorique des premiers principes, i.e. de manière dite ab initio, des noyaux atomiques contenant plus de 12 nucléons n’est devenue possible que récemment grâce aux développements cruciaux de la théorie à N corps et à la disponibilité d’ordinateurs hautes performances de plus en plus puissants. Ces techniques ab initio sont appliquées avec succès pour étudier la structure des noyaux, en partant des isotopes les plus légers et pour atteindre aujourd’hui tous les noyaux de masse moyenne contenant jusqu’à environ 80 nucléons. L’extension à des systèmes encore plus lourds nécessite des avancées décisives du point de vue du cout de stockage et du temps de calcul induits par les méthodes à N corps disponibles. Dans ce contexte, l’objectif de la thèse est de développer la méthode de réduction de dimensionalité fondée sur la factorisation des tenseurs mis en jeu dans le cadre de la théorie à N corps non perturbative dite de coupled cluster déformée (dCC). Le travail proposé exploitera les dernières avancées en théorie nucléaire, y compris l’utilisation des potentiels nucléaires issus de la théorie effective des champs chirale et des techniques du groupe de renormalisation, ainsi que des ressources et des codes de calcul haute performance.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The theoretical description from first principles, i.e. in a so-called ab initio manner, of atomic nuclei containing more than 12 nucleons has only recently become possible thanks to the crucial developments in many-body theory and the availability of increasingly powerful high-performance computers. These ab initio techniques are successfully applied to study the structure of nuclei, starting from the lightest isotopes and now reaching all medium-mass nuclei containing up to about 80 nucleons. The extension to even heavier systems requires decisive advances in terms of storage cost and computation time induced by available many-body methods. In this context, the objective of the thesis is to develop the dimensionality reduction method based on the factorization of tensors involved in the non-perturbative many-body theory known as deformed coupled cluster (dCC). The proposed work will exploit the latest advances in nuclear theory, including the use of nuclear potentials from chiral effective field theory and renormalization group techniques, as well as high-performance computing resources and codes.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Service de Physique Nucléaire
Laboratoire : Laboratoire études du noyau atomique (LENA)
Date de début souhaitée : 01-10-
Ecole doctorale : PHENIICS (PHENIICS)
Directeur de thèse : DUGUET Thomas
Organisme : CEA
Laboratoire : DRF/IRFU
Funding category
Public/private mixed funding
Funding further details
En cliquant sur "JE DÉPOSE MON CV", vous acceptez nos CGU et déclarez avoir pris connaissance de la politique de protection des données du site jobijoba.com.